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The numerical results we have generated show that the trans-

mission properties of the bend are significantly improved with a

initer cut at the corner. By themselves, our results provide an

accuracy check for the more sophisticated integral equation ap-

proach which can handle Ubitrarily shaped boundaries. More-

over, with a slight modification, this technique may be extended

to study microstrip corners with an arbitrary miter.
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The Use of a Single Source to Drive a Binary Peak

Power Multiplier

p. E. LATHAM, MEMBER, IEEE

Abstract —The binary power multiplier (BPM) recently proposed by

Farkas [1] requires a pair of RF inputs whose phases are set independently.

In this note, a method is presented in which a single source maybe used to

drive a BPM. Phase coding occurs at the source input, where the power is

low and phase switching is straightforward. There is a loss in energy of

around 25 percent but only a small reduction in peak power.

I. INTRODUCTION

Future TeV linear colliders require sources producing peak

power in the 100 MW range. The exact power level depends on

frequency, but present estimates are around 750 MW at 2.8 GHz

[1] (SLAC frequency), 500 MW at 10 GHz [2], and 200 MW at 17

GHz [3]. When additional constraints such as high efficiency,
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Fig 1. (a) Coding for a single-stage binary power multipher The time bms

are coded according to phase. – represents 0° and + represents 180°. On

output, the pulse length is halved and the power doubled (b) Schematic of a

single-stage BPM.

high gain, and phase stability are introduced. these powers are

beyond the state of the, art of present and near-future sources. To

circumvent the lack of suitable sources, pulse compression may

be used to increase peak power at the expense of pulse length,

thus reducing the req~rements to technologically feasible levels.

Recently, Farkas proposed an efficient multiple-stage pulse

compression scheme [1] in which the power is doubled and the

pulse length halved at each stage. The scheme is described in

detail in [1]. Briefly, a single stage of the binary power multiplier

(BPM) works as follows: the input into each stage consists of two

pulse trains coded intqr time bins, with a phase of either 0° or

180° in each bin. The pulse trains are combined to produce two

outputs, each at twice the power and half the duration and

properly coded for the: next stage. The coding for this process is

illustrated schematically in Fig. l(a), where a phase of 0° is

denoted by a – and a phase of 180° by a +. The power

doubling, which is shown in Fig. l(b), occurs in two steps. First,

adjacent bins are combined by a 3 dB hybrid coupler according

to the rules given in [1]. Second, the leading pulse is delayed so

that the bins are again adjacent. The peak power multiplication is

2“ for an n-stage device, less any losses due to nonideal prop-

erties.

This pulse compression scheme has been demonstrated at low

power using both fundamental mode rectangular and TEOl circu-

lar waveguide [3]. While the basic validity of the binary pulse

multiplication scheme was confirmed, the losses were high (greater

than 40 percent power loss for the two-stage BPM). For practicaf

applications, delay lines with acceptable wall losses and 3 dB

hybrid couplers with minimal mode conversion and reflection

need to be designed. In ‘addition, problems of phase noise need to

be studied, as the BPM efficiency degrades rapidly with phase

jitter.

Because of the high power involved, the coding of the pair of

pulses trains which enters the BPM must occur at the input end

of the source, where the power is low, Consequently, two separate

sources are needed to drive a single BPM if it is to operate at

maximum efficiency. For testing and development, however, it is

desirable to use a single source. This may be done with some

decrease in energy efficiency (less than 30 percent) but little loss
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Fig. 2. Preparation of a single source for input into a three-stage BPM. Note

that the overlap region has the same coding as in Fig. l(a). This method

works for any number of stages, as the first and second half of a pulse may

be coded independently.

in peak power. A description of the single-source BPM is pre-

sented in the next section, and a summary is given in Section III.

II. A SINGLE-SOURCE BPM

To function, a BPM requires only a pair of pulse trains with

the proper coding. While in principle one could split the output

from a single source and code each independently by introducing

a 180° phase shift at appropriate times, the high powers involved

preclude such an approach. However, a single source may be

used with 50 percent loss in energy by coding the input into twice

as many time bins as are needed, splitting the output, delaying

one of the pulse trains by half the pulse length, then recombining

the first half of one pulse with the second half of the other. This

process is illustrated in Fig. 2 for a two-stage, single-source BPM.

The final pulse is l/8th the length of the source output and four

times the power. While half the energy is wasted, there is only a

small loss in peak power that occurs during the initial splitting

and delay.

In fact, with a proper design it is possible to use significantly

more than 50 percent of the pulse. For instance, by splitting a

five-bin output in two and combining the first 80 percent of one

with the last 80 percent of the other, proper coding for a x 4

BPM can be achieved (see Fig. 3(a)). This is possible even though

the combined pulse trains are not independent, essentially be-

cause the coding for a BPM is not unique-there are many

“correct” initial coding sequences for a given multiplication

factor. Thus, while there is no guarantee of finding an energy

efficient device for multiplication above X 4, we except at least

some improvement over 50 percent.

Using a semisystematic trial and error method in which succes-

sively longer delays (and thus lower efficiencies) were investi-

gated, improved intrinsic efficiencies were found for x 8 and

x 16 BPMs. The details of this method may be found in the

Appendix, and the resulting codings are shown in Fig. 3(b) and

3(c). Note that the efficiencies are now 73 percent (8/11) and 76

percent (16/21), a substantial increase over 50 percent. It is

expected that similar results would be achieved at higher multi-

plication factors.

While the increase in energy efficiency is an added plus, the

main thrust here is that a BPM cao be driven with a single

source. This will significantly lower the cost, both economically

and in terms of manpower, of testing and development of BPMs
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Fig. 3 Energy efficient coding for a single source: (a) x 4 multiplication;

(b) X 8 multiphcation; (c) X 16 rnultiphcatlon.

for practical applications. In addition, even with a 30 percent

energy loss the single-source BPM is only slightly less efficient

than SLED [4], the pulse compression scheme currently in use at

the Stanford linear accelerator. Moreover, it can produce larger

compression ratios (SLED efficiency peaks at about 3:1) and a

significantly flatter output pulse [1]. Thus, in applications where

efficiency is not at a premium the relative simplicity of a single-

source BPM makes it an attractive alternative to the two-source

BPM.

III. SUMMARY

A method is illustrated for driving a BPM using a single

source. As with the two-source BPM, coding occurs at the source

input where the power is low. While there is an additional loss of

energy between 20 percent and 30 percent over a two-source

BPM for X 4, x 8, and X 16 multiplication, there is only a small

reduction in power associated with the initial splitting and delay

of the source output.

APPENDIX

ENERGY-EFFICIENT CODING

Because there are 22” different possible codes in an n-stage

device, finding the coding for an energy-efficient BPM using a

purely trial and error method would be prohibitively time con-

suming. However, the energy-efficient codes are special in that

they arise from a shift: in an nz-shift (for instance), there are

2“ + m bins and the last 2“ are aligned with the first 2“ to create

the proper coding for an n-stage device. The resulting intrinsic

efficiency is 2“/( m + 2“ ). Fig. 3(a), (b), and (c) illustrates, respec-

tively, a l-shift, 3-shift and 5-shift. While the intrinsic efficiency

depends only on the shift, to uniquely determine a coding se-

quence we need to specify both the shift and the number of bins

that remain adjacent after the pulse has passed through each
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Fig. 4. Attempt at coding a X 8 BPM with a 3-shift, l-cycle (a) The first 6

bms (b) Addition of the trrplet above (x, y, z ); chosen to ensure a l-cycle.

(c) 3-shift of the triplet (x, ~. z). (d) Symbolic coding of all 22 bins.

(e) Coding after one stage of the BPM. No matter how x, y, and z are

chosen, the appropriate coding for the next two stages of the BPM cannot

be achieved.

stage of the BPM. As an example, consider Fig. l(b). Referring to

the number of adjacent bins as the cycle, we see that the coding

in this figure produces a 2-cycle after the first stage and a l-cycle

after the second stage. Thus, Fig. 3(a), which has the same coding

as Fig. l(b), represents a l-shift, (2, 1)-cycle, Fig. 3(b) represents a

3-shift, (2, 2,1)-cycle, and Fig. 3(c) a 5-shift, (2,2,2,1)-cycle.

While the full set of cycles is necessary to uniquely specify a

coding, we are really interested only in the shift. A semisystem-

atic triaf and error method for finding the optimal coding can be

stated as follows. Begin by choosing the smallest possible shift.

Then guess a set of cycles and check whether or not it leads to a

coding appropriate for a BPM. If not, increase the shift and

repeat the process.

To demonstrate this method we construct the 3-shift coding for

a X 8 BPM. (We start with the 3-shift because shifts of 1 and 2

bins do not produce appropriate coding.) It is convenient to

proceed symbolically. Let the + and – signs that previously

represented phases of O and 180° be replaced by letters, and let a

phase shift by 180° be denoted by an overbar. Thus, if x stands

for +, then z stands for –, and > =x. Using this notation, the

sequence in which we fill the 22 bins shown in Fig. 3(b) is

presented in Figs. 4 and 5. Since we are using a 3-shift we can

(b)

EEB

ZXxy
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Fig 5. Coding of a x 8 BPM with a 3-shift, 2-cycle. (a) Symbohc coding of

all 22 bins. (b) Coding after one stage of the BPM. (c) Same as (b) except

that y has been replaced by z sad ~ by x. This coding is appropriate for the

next two stages of the f3PM,

immediately fill in the’ first six bins (Fig. 4(a)). Let us guess that

the first cycle is a l-cycle so that the three bins above the triplet

(x, y, z) are (x, ~, z) (Fig. 4(b)). The new triplet (x, j, z) then

shifts down to produce Fig. 4(c), and the triplet above it is

(i? j, 2). Continuing the process, we fill in all 22 bins with

symbolic phases (Fig. 4(d)).

The next step is to eliminate the nonoverlapping triplets at

either end and pass the configuration through one stage of a

BPM. This results in the coding illustrated in Fig. 4(e), and leaves

us with four possibilities: y = x or z and z = x or X. Unfortu-

nately, none of these leads to the appropriate coding for a BPM,

so we repeat the pro~ess with a 2-cycle instead of a l-cycle.

Following the above procedure, we arrive at the 3-shift, 2-cycle

coding of Fig. 5(a); passing it through one stage of a BPM and

eliminating the nonoverlapping triplets then produces the coding

in Fig. 5(b). Finally, clioosing y = 1 and z = x yields the proper

coding for a BPM

Fig. 3(b).
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(Fig. 5(c)), and letting x = + recovers
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