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The numerical results we have generated show that the trans-
mission properties of the bend are significantly improved with a
miter cut at the corner. By themselves, our results provide an
accuracy check for the more sophisticated integral equation ap-
proach whichi can handle arbitrarily shaped boundaries. More-
over, with a slight modification, this technique may be extended
to study microstrip corners with an arbitrary miter.
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The Use of a Single Source to Drive a Binary Peak
Power Multiplier

P. E. LATHAM, MEMBER, IEEE

Abstract —The binary power multiplier (BPM) recently proposed by
Farkas [1] requires a pair of RF inputs whose phases are set independently.
In this note, a method is presented in which a single source may be used to
drive a BPM. Phase coding occurs at the source input, where the power is
low and phase switching is straightforward. There is a loss in energy of
around 25 percent but only a small reduction in peak power.

1. INTRODUCTION

Future TeV linear colliders require sources producing peak
power in the 100 MW range. The exact power level depends on
frequency, but present estimates are around 750 MW at 2.8 GHz
[1]1 (SLAC frequency), 500 MW at 10 GHz [2], and 200 MW at 17
GHz [3]. When additional constraints such as high efficiency,
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Fig 1. (a) Coding for a single-stage binary power multiplier The time bins
are coded according to phase — represents 0° and + represents 180°. On
output, the pulse length is halved and the power doubled (b) Schematic of a
single-stage BPM.

high gain, and phase stability are introduced. these powers are
beyond the state of the art of present and near-future sources. To
circumvent the lack of suitable sources, pulse compression may
be used to increase peak power at the expense of pulse length,
thus reducing the requirements to technologically feasible levels.

Recently, Farkas proposed an efficient multiple-stage pulse
compression scheme [1] in which the power is doubled and the
pulse length halved at each stage. The scheme is described in
detail in [1]. Briefly, a single stage of the binary power multiplier
(BPM) works as follows: the input into each stage consists of two
pulse trains coded into time bins, with a phase of either 0° or
180° in each bin. The pulse trains are combined to produce two
outputs, each at twice the power and half the duration and
properly coded for the next stage. The coding for this process is
illustrated schematica,ﬂy in Fig. 1(a), where a phase of 0° is
denoted by a — and a phase of 180° by a +. The power
doubling, which is shown in Fig. 1(b), occurs in two steps. First,
adjacent bins are combined by a 3 dB hybrid coupler according
to the rules given in [1]. Second, the leading pulse is delayed so
that the bins are again adjacent. The peak power multiplication is
2" for an n-stage device, less any losses due to nonideal prop-
erties.

This pulse compression scheme has been demonstrated at low
power using both fundamental mode rectangular and TE, circu-
lar waveguide [3]. While the basic validity of the binary pulse
multiplication scheme was confirmed, the losses were high (greater
than 40 percent power loss for the two-stage BPM). For practical
applications, delay lines with acceptable wall losses and 3 dB
hybrid couplers with minimal mode conversion and reflection
need to be designed. In addition, problems of phase noise need to
be studied, as the BPM efficiency degrades rapidly with phase
jitter.

Because of the high power involved, the coding of the pair of
pulses trains which enters the BPM must occur at the input end
of the source, where the power is low. Consequently, two separate
sources are needed to drive a single BPM if it is to operate at
maximum efficiency. For testing and development, however, it is
desirable to use a single source. This may be done with some
decrease in energy efficiency (less than 30 percent) but little loss
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Fig. 2. Preparation of a single source for input into a three-stage BPM. Note

that the overlap region has the same coding as in Fig. 1(a). This method
works for any number of stages, as the first and second half of a pulse may
be coded independently.

in peak power. A description of the single-source BPM is pre-
sented in the next section, and a summary is given in Section IIL

II. A SINGLE-SOURCE BPM

To function, a BPM requires only a pair of pulse trains with
the proper coding. While in principle one could split the output
from a single source and code each independently by introducing
a 180° phase shift at appropriate times, the high powers involved
preclude such an approach. However, a single source may be
used with 50 percent loss in energy by coding the input into twice
as many time bins as are needed, splitting the output, delaying
one of the pulse trains by half the pulse length, then recombining
the first half of one pulse with the second half of the other. This
process is illustrated in Fig. 2 for a two-stage, single-source BPM.
The final pulse is 1/8th the length of the source output and four
times the power. While half the energy is wasted, there is only a
small loss in peak power that occurs during the initial splitting
and delay.

In fact, with a proper design it is possible to use significantly
more than 50 percent of the pulse. For instance, by splitting a
five-bin output in two and combining the first 80 percent of one
with the last 80 percent of the other, proper coding for a x4
BPM can be achieved (see Fig. 3(a)). This is possible even though
the combined pulse trains are not independent, essentially be-
cause the coding for a BPM is not unique—there are many
“correct” initial coding sequences for a given multiplication
factor. Thus, while there is no guarantee of finding an energy
efficient device for multiplication above X4, we except at least
some improvement over 50 percent.

Using a semisystematic trial and error method in which succes-
sively longer delays (and thus lower efficiencies) were investi-
gated, improved intrinsic efficiencies were found for X8 and
X16 BPM’s. The details of this method may be found in the
Appendix, and the resulting codings are shown in Fig. 3(b) and
3(c). Note that the efficiencies are now 73 percent (8,/11) and 76
percent (16/21), a substantial increase over 50 percent. It is
expected that similar results would be achieved at higher multi-
plication factors.

While the increase in energy efficiency is an added plus, the
main thrust here is that a BPM can be driven with a single
source. This will significantly lower the cost, both economically
and in terms of manpower, of testing and development of BPM’s
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for practical applications. In addition, even with a 30 percent
energy loss the single-source BPM is only slightly less efficient
than SLED {4], the pulse compression scheme currently in use at
the Stanford linear accelerator. Moreover, it can produce larger
compression ratios (SLED efficiency peaks at about 3:1) and a
significantly flatter output pulse [1]. Thus, in applications where
efficiency is not at a premium the relative simplicity of a single-
source BPM makes it an attractive alternative to the two-source
BPM.

III. SumMMARY

A method is illustrated for driving a BPM using a single
source. As with the two-source BPM, coding occurs at the source
input where the power is low. While there is an additional loss of
energy between 20 percent and 30 percent over a two-source
BPM for X4, X8, and X 16 multiplication, there is only a small
reduction in power associated with the initial splitting and delay
of the source output.

APPENDIX
Exnercv-Erricient Cobing

Because there are 2%" different possible codes in an n-stage
device, finding the coding for an energy-efficient BPM using a
purely trial and error method would be prohibitively time con-
suming. However, the energy-efficient codes are special in that
they arise from a shift: in an m-shift (for instance), there are
2" + m bins and the last 2" are aligned with the first 2” to create
the proper coding for an n-stage device. The resulting intrinsic
efficiency is 2" /(m +2"). Fig. 3(a), (b), and (¢) illustrates, respec-
tively, a 1-shift, 3-shift and 5-shift. While the intrinsic efficiency
depends only on the shift, to uniquely determine a coding se-
quence we need to specify both the shift and the number of bins
that remain adjacent after the pulse has passed through each
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Fig. 4. Attempt at coding a X8 BPM with a 3-shift, 1-cycle (a) The first 6
bins (b) Addition of the triplet above (x, y, z); chosen to ensure a 1-cycle.
(¢) 3-shift of the triplet (x,y.z). (d) Symbolic coding of all 22 bins.
(e) Coding after one stage of the BPM. No matter how x, y, and z are
chosen, the appropriate coding for the next two stages of the BPM cannot
be achieved.

stage of the BPM. As an example, consider Fig. 1(b). Referring to
the number of adjacent bins as the cycle, we see that the coding
in this figure produces a 2-cycle after the first stage and a 1-cycle
after the second stage. Thus, Fig. 3(a), which has the same coding
as Fig. 1(b), represents a 1-shift, (2,1)-cycle, Fig. 3(b) represents a
3-shift, (2,2,1)-cycle, and Fig. 3(c) a 5-shift, (2,2,2,1)-cycle.

While the full set of cycles is necessary to uniquely specify a
coding, we are really interested only in the shift. A semisystem-
atic trial and error method for finding the optimal coding can be
stated as follows. Begin by choosing the smallest possible shift.
Then guess a set of cycles and check whether or not it leads to a
coding appropriate for a BPM. If not, increase the shift and
repeat the process.

To demonstrate this method we construct the 3-shift coding for
a X8 BPM. (We start with the 3-shift because shifts of 1 and 2
bins do not produce appropriate coding.) It is convenient to
proceed symbolically. Let the + and — signs that previously
represented phases of 0 and 180° be replaced by letters, and let a
phase shift by 180° be denoted by an overbar. Thus, if x stands
for +, then X stands for —, and % = x. Using this notation, the
sequence in which we fill the 22 bins shown in Fig. 3(b) is
presented in Figs. 4 and 5. Since we are using a 3-shift we can
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Fig 5. Coding of a X8 BPM with a 3-shift, 2-cycle. (a) Symbolic coding of
all 22 bins. (b) Coding after one stage of the BPM. (c) Same as (b) except
that y has been replaced by X and - by x. This coding is appropriate for the
next two stages of the BPM.

immediately fill in the first six bins (Fig. 4(a)). Let us guess that
the first cycle is a 1-cycle so that the three bins above the triplet
(x, p,2z) are (x, y, z} (Fig. 4(b)). The new triplet (x, y, z) then
shifts down to produce Fig. 4(c), and the triplet above it is
(X, ¥, z). Continuing the process, we fill in all 22 bins with
symbolic phases (Fig. 4(d)).

The next step is to eliminate the nonoverlapping triplets at
either end and pass the configuration through one stage of a
BPM. This results in the coding illustrated in Fig. 4(e), and leaves
us with four possibilities: y =x or X and z=x or x. Unfortu-
nately, none of these leads to the appropriate coding for a BPM,
so we repeat the process with a 2-cycle instead of a 1-cycle.
Following the above procedure, we arrive at the 3-shift, 2-cycle
coding of Fig. 5(a); passing it through one stage of a BPM and
eliminating the nonoverlapping triplets then produces the coding
in Fig, 5(b). Finally, choosing y =X and z = x yields the proper
coding for a BPM (Fig. 5(c)), and letting x =+ recovers
Fig. 3(b).
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